

Final Meeting Yerevan. June 2017

Task 4: Production of Validated Solar Atlas

TABLE OF CONTENTS

- **1**. Data correction
- 2. Solar Atlas

Final Meeting Yerevan. June 2017

Final Meeting Yerevan. June 2017

Final Meeting Yerevan. June 2017

2. The Project. Task 4: Validated Solar Atlas

Solar Map adjustment

GHI

Results of the adjustment

- Removal of systematic differences between satellite estimations and ground measurements for different atmospheric, seasonal, illumination conditions for:
 - Absolute values
 - Frequency distribution

Two main issues for satellites, characteristic of Armenia:

- Aerosols
- Snow

Final Meeting Yerevan. June 2017

Solar Map correction: characteristics

- Site adaptation for an extended region
- Statistical climatology is reproduced by long-term satellite estimations and model reanalysis
- Annual measurement of select locations allows for fine tunning of the longterm information, essentially by reducing the systematic errors (bias)
- Annual measurement are only a sample of the long-term
- Long-term tendences and fine adjustment should be spatialy propagated in a proper way

Representative sites

Initial study for optimizing station locations:

- D7. Candidate site identification report (clustering)
- D11. Advice on site selection report

Final Meeting Yerevan. June 2017

Methodology

Method based on artificial

intelligence technics

- Gradient boosting regressor
- Neural networks
- Genetic algoriths

Methodology

Allows for coherent integration of different sources of information: satellite irradiances, aersols, meteo variables, topographic characteristics,

etc.

Final Meeting Yerevan. June 2017

- Model has been evaluateded against the 5 radiometric stations along the complete year period
- The comparison has been made in different time ranges: from 1h to yearly-basis
- The data before and after the correction are also compared
- Additionally, external sources of information has been used as reference values for comparison purposes
- The period is extended to 11 years for benchmarking with other sources (due to data availability)
- Results differe from GHI and DNI.

Model validation

Main results:

- Armenia presents a challenge for satellites to estimate reliably solar irradiance.
 This could be partially explained by aerosols and snow
- DNI is estimated worst, with extremelly high error values for all the sources analyzed
- GHI is estimated reasonably well, after correction
- Methodology correction improves significantly the initial results
- Long-term and average monthly and yearly values are estimated with reasonable accuracy

Model validation

Final Meeting Yerevan. June 2017 16

Model validation

Final Meeting Yerevan. June 2017 17

Final Meeting Yerevan. June 2017 20

GHI

GHI: representative sites

- Monthly averages2000-2016 period.
 - Highest: >7 kW/m²/day in Summer

•

GHI: representative sites

DNI

- Mean Yearly Values2000-2016 period.
 - Highest: 6.3 kW/m²/day 2300kW/m²/year
- Belt rounding south face of Aragats mount
- Between provinces of Aragats and Kotayk
- the Ararat valley
- Vayots Dzor
- Lake Sevan

DNI

- Monthly averages2000-2016 period.
- Large variability
- Highest
 6 to 8 kW/m²/day in
 Summer

DNI

Site	Average Yearly sum (kW/m2/year)
Khot	1740
Hrazdan	1810
Masrik	2000
Talin	2100
Yerevan-Agro	1950

DHI

- Mean Yearly Values2000-2016 period.
 - Lowest: 1.5 kW/m²/day 550 kW/m²/year
- Belt rounding south face of Aragats mount
- Between provinces of Aragats and Kotayk
- the Ararat valley
- Vayots Dzor
- Lake Sevan

•

Optimum Tilt

Study over a tilt range : [30, 42]

GTI at Tilt 35°

- Mean Yearly Values2000-2016 period.
 - Highest: 5,7 kW/m²/day 2100kW/m²/year
- Belt rounding south face of Aragats mount
- Between provinces of Aragats and Kotayk
- the Ararat valley
- Vayots Dzor
- Lake Sevan

GTI at Tilt 35°

- Monthly averages2000-2016 period.
- Highest
 6 to 7 kW/m²/day in
 Summer

GTI at Tilt 35°

Site	Average Yearly sum (kW/m2/year)
Khot	1690
Hrazdan	1915
Masrik	1960
Talin	1975
Yerevan-Agro	1875

Methodology for PV potential

PV Yield is the specific energy that a PV system produce per kWp installed.

Methodology for PV potential

1. METEO INPUT

Averaged meteorological year: 8760 hourly values for each cell of the map grid (0.05°).

• GTI, Temperature, Wind

2. PV PLANT PARAMETERS

- PV Generator: PV Si-c modules (REC Peak Energy 72, 310Wp)
- Mounting: static tilt angle 35°
- Inverter vs PV Peak Power Ratio: 1.2
- PV Inverter: 1MW SMA Sunny Central MPVS-100 (94.4% European Efficiency)
- LV/MV Transformer: Commercial 1.2 MW capacity (SMA SC1000-CPXT)
- Losses:
 - Dust: 2%, Maximum Peak Power Tracking: 2%, Electrical (due to cables, fuses, and other electrical components): 2%, Shadows: 1%.
 - Total losses factor: 7%

Methodology for PV potential

3. PV YIELD ESTIMATION

effergy

$$E_{annual} = \int P_{AC}(G,T) dt = \int P_{DC}(G,T) \cdot \eta_{Inv} \cdot \eta_T dt$$

• Output power of the PV Generator:

$$P_{DC} = P^* \frac{G}{G^*} \cdot \frac{\eta}{\eta^*}$$

• Power efficiency of the inverter:

$$\eta_{\text{Inv}} = \frac{P_{\text{AC}}}{P_{\text{DC}}} = \frac{p_{\text{DC}} - (k_0 + k_1 \cdot p_{\text{DC}} + k_2 \cdot p_{\text{DC}}^2)}{p_{\text{DC}}}$$

• Power efficiency of the LV/MV transformer:

$$\eta_T = \frac{P_{out}}{P_{AC}} = \frac{P_{out}}{P_{out} + P_{Core} + P_{Cr}}$$

• Further details found in Deliverable 5 of the Project.: D5. Interim Solar Modeling Report.

Final Meeting Yerevan. June 2017 34

PV Yield

- TMY
- Highest: 1900kWh/kWp
- Belt rounding south face of Aragats mount
- Between provinces of Aragats and Kotayk
- the Ararat valley
- Vayots Dzor
- Lake Sevan

PV Yield

Monthly averages2000-2016 period.

Highest
 5 to 6 kW/kWp/day
 in Summer

Site	Average Yearly sum (kW/kWp/year)
Khot	1640
Hrazdan	1770
Masrik	1790
Talin	1820
Yerevan-Agro	1710

ՇՆՈՐՀԱԿԱԼՈՒԹՅՈՒՆ

